Tuesday, February 23, 2010

About Gregor Mendel


From Wikipedia, the free encyclopedia

Gregor Johann Mendel (July 20, 1822 – January 6, 1884) was an Augustinian priest and scientist, who gained posthumous fame as the figurehead of the new science of genetics for his study of the inheritance of certain traits in pea plants. Mendel showed that the inheritance of these traits follows particular laws, which were later named after him. The significance of Mendel's work was not recognized until the turn of the 20th century. The independent rediscovery of these laws formed the foundation of the modern science of genetics.


Biography

Mendel was born into an ethnic German family in Heinzendorf bei Odrau, Austrian Silesia, Austrian Empire (now Hynčice, Czech Republic), and was baptized two days later. He was the son of Anton and Rosine Mendel, and had one older sister and one younger. They lived and worked on a farm which had been owned by the Mendel family for at least 130 years. During his childhood, Mendel worked as a gardener, studied beekeeping, and as a young man attended the Philosophical Institute in Olomouc in 1840–1843. Upon recommendation of his physics teacher Friedrich Franz, he entered the Augustinian Abbey of St Thomas in Brno in 1843. Born Johann Mendel, he took the name Gregor upon entering monastic life. In 1851 he was sent to the University of Vienna to study under the sponsorship of Abbot C. F. Napp. At Vienna, his professor of physics was Christian Doppler. Mendel returned to his abbey in 1853 as a teacher, principally of physics, and by 1867, he had replaced Napp as abbot of the monastery.

Experiments on Plant Hybridization
Gregor Mendel, who is known as the "father of modern genetics", was inspired by both his professors at university and his colleagues at the monastery to study variation in plants, and he conducted his study in the monastery's two hectare[7] experimental garden, which was originally planted by the abbot Napp in 1830.[5] Between 1856 and 1863 Mendel cultivated and tested some 29,000 pea plants (i.e., Pisum sativum). This study showed that one in four pea plants had purebred recessive alleles, two out of four were hybrid and one out of four were purebred dominant. His experiments brought forth two generalizations, the Law of Segregation and the Law of Independent Assortment, which later became known as Mendel's Laws of Inheritance.

Mendel did read his paper, Experiments on Plant Hybridization, at two meetings of the Natural History Society of Brünn in Moravia in 1865. When Mendel's paper was published in 1866 in Proceedings of the Natural History Society of Brünn,[8] it had little impact and was cited about three times over the next thirty-five years. (Notably, Charles Darwin was unaware of Mendel's paper, according to Jacob Bronowski's The Ascent of Man.) His paper was criticized at the time, but is now considered a seminal work.

Life after the pea experiments
After Mendel completed his work with peas, he turned to experimenting with honeybees, in order to extend his work to animals. He produced a hybrid strain (so vicious they were destroyed), but failed to generate a clear picture of their heredity because of the difficulties in controlling mating behaviours of queen bees. He also described novel plant species, and these are denoted with the botanical author abbreviation "Mendel".

After he was elevated as abbot in 1868, his scientific work largely ended as Mendel became consumed with his increased administrative responsibilities, especially a dispute with the civil government over their attempt to impose special taxes on religious institutions.[9] At first Mendel's work was rejected, and it was not widely accepted until after he died. At that time most biologists held the idea of blending inheritance, and Charles Darwin's efforts to explain inheritance through a theory of pangenesis were unsuccessful. Mendel's ideas were rediscovered in the early twentieth century, and in the 1930s and 1940s the modern synthesis combined Mendelian genetics with Darwin's theory of natural selection.

Mendel died on January 6, 1884, at age 61, in Brno, Moravia, Austria-Hungary (now Czech Republic), from chronic nephritis. Czech composer Leoš Janáček played the organ at his funeral. After his death the succeeding abbot burned all papers in Mendel's collection, to mark an end to the disputes over taxation.

Besides his work on plant breeding while at St Thomas's Abbey, Mendel also bred bees in a bee house that was built for him, using bee hives that he designed.[6] He also studied astronomy and meteorology[5], founding the 'Austrian Meteorological Society' in 1865.[4] The majority of his published works were related to meteorology.[4]
Knowledge is not mine and never be mine, it belongs to everyone who had will to have and spread it.

Rediscovery of Mendel's work
It was not until the early 20th century that the importance of his ideas was realized. By 1900, research aimed at finding a successful theory of discontinuous inheritance rather than blending inheritance led to independent duplication of his work by Hugo de Vries and Carl Correns, and the rediscovery of Mendel's writings and laws. Both acknowledged Mendel's priority, and it is thought probable that de Vries did not understand the results he had found until after reading Mendel.[2] Though Erich von Tschermak was originally also credited with rediscovery, this is no longer accepted because he did not understand Mendel's laws.[11] Though de Vries later lost interest in Mendelism, other biologists started to establish genetics as a science.[2]

Mendel's results were quickly replicated, and genetic linkage quickly worked out. Biologists flocked to the theory, even though it was not yet applicable to many phenomena, it sought to give a genotypic understanding of heredity which they felt was lacking in previous studies of heredity which focused on phenotypic approaches. Most prominent of these latter approaches was the biometric school of Karl Pearson and W.F.R. Weldon, which was based heavily on statistical studies of phenotype variation. The strongest opposition to this school came from William Bateson, who perhaps did the most in the early days of publicising the benefits of Mendel's theory (the word "genetics", and much of the discipline's other terminology, originated with Bateson). This debate between the biometricians and the Mendelians was extremely vigorous in the first two decades of the twentieth century, with the biometricians claiming statistical and mathematical rigor, whereas the Mendelians claimed a better understanding of biology. In the end, the two approaches were combined as the modern synthesis of evolutionary biology, especially by work conducted by R. A. Fisher as early as 1918.

Mendel's experimental results have later been the object of considerable dispute.[10][12] Fisher analyzed the results of the F2 (second filial) ratio and found them to be implausibly close to the exact ratio of 3 to 1.[13] Only a few would accuse Mendel of scientific malpractice or call it a scientific fraud—reproduction of his experiments has demonstrated the validity of his hypothesis—however, the results have continued to be a mystery for many, though it is often cited as an example of confirmation bias. This might arise if he detected an approximate 3 to 1 ratio early in his experiments with a small sample size, and continued collecting more data until the results conformed more nearly to an exact ratio. It is sometimes suggested that he may have censored his results, and that his seven traits each occur on a separate chromosome pair, an extremely unlikely occurrence if they were chosen at random. In fact, the genes Mendel studied occurred in only four linkage groups, and only one gene pair (out of 21 possible) is close enough to show deviation from independent assortment; this is not a pair that Mendel studied

Mendelian inheritance as Betta breeder approach


From Wikipedia, the free encyclopedia
Jump to: navigation, search
For a non-technical introduction to the topic, see Introduction to genetics.

Mendelian inheritance (or Mendelian genetics or Mendelism) is a set of primary tenets relating to the transmission of hereditary characteristics from parent organisms to their offspring; it underlies much of genetics. They were initially derived from the work of Gregor Mendel published in 1865 and 1866 which was "re-discovered" in 1900, and were initially very controversial. When they were integrated with the chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics.

History
Main article: History of genetics

The laws of inheritance were derived by Johann Gregor Mendel, a 19th century [1] monk conducting hybridization experiments in garden peas (Pisum sativum). Between 1856 and 1863, he cultivated and tested some 29,000 pea plants. From these experiments he deduced two generalizations which later became known as Mendel's Laws of Heredity or Mendelian inheritance. He described these laws in a two part paper, Experiments on Plant Hybridization that he read to the Natural History Society of Brno on February 8 and March 8, 1865, and which was published in 1866.[2]

Mendel's conclusions were largely ignored. Although they were not completely unknown to biologists of the time, they were not seen as generally applicable, even by Mendel himself, who thought they only applied to certain categories of species or traits. A major block to understanding their significance was the importance attached by 19th Century biologists to the apparent blending of inherited traits in the overall appearance of the progeny, now known to be due to multigene interactions, in contrast to the organ-specific binary characters studied by Mendel.[1] In 1900, however, his work was "re-discovered" by three European scientists, Hugo de Vries, Carl Correns, and Erich von Tschermak. The exact nature of the "re-discovery" has been somewhat debated: De Vries published first on the subject, mentioning Mendel in a footnote, while Correns pointed out Mendel's priority after having read De Vries's paper and realizing that he himself did not have priority. De Vries may not have acknowledged truthfully how much of his knowledge of the laws came from his own work, or came only after reading Mendel's paper. Later scholars have accused Von Tschermak of not truly understanding the results at all.[1]

Regardless, the "re-discovery" made Mendelism an important but controversial theory. Its most vigorous promoter in Europe was William Bateson, who coined the term "genetics", "gene", and "allele" to describe many of its tenets. The model of heredity was highly contested by other biologists because it implied that heredity was discontinuous, in opposition to the apparently continuous variation observable for many traits. Many biologists also dismissed the theory because they were not sure it would apply to all species, and there seemed to be very few true Mendelian characters in nature. However later work by biologists and statisticians such as R.A. Fisher showed that if multiple Mendelian factors were involved in the expression of an individual trait, they could produce the diverse results observed. Thomas Hunt Morgan and his assistants later integrated the theoretical model of Mendel with the chromosome theory of inheritance, in which the chromosomes of cells were thought to hold the actual hereditary material, and create what is now known as classical genetics, which was extremely successful and cemented Mendel's place in history.

Mendel's findings allowed other scientists to predict the expression of traits on the basis of mathematical probabilities. A large contribution to Mendel's success can be traced to his decision to start his crosses only with plants he demonstrated were true-breeding. He also only measured absolute (binary) characteristics, such as color, shape, and position of the offspring, rather than quantitative characteristics. He expressed his results numerically and subjected them to statistical analysis. His method of data analysis and his large sample size gave credibility to his data. He also had the foresight to follow several successive generations (f2, f3) of his pea plants and record their variations. Finally, he performed "test crosses" (back-crossing descendants of the initial hybridization to the initial true-breeding lines) to reveal the presence and proportion of recessive characters. Without his hard work and careful attention to procedure and detail, Mendel's work could not have had the impact it made on the world of genetics.
[edit] Mendel's Laws

The principles of heredity were written by the Augustinian monk Gregor Mendel in 1865. Mendel discovered that by crossing white flower and purple flower plants, the result was not a blend. Rather than being a mix of the two, the offspring was purple flowered. He then conceived the idea of heredity units, which he called "factors", one which is a recessive characteristic and the other dominant. Mendel said that factors, later called genes, normally occur in pairs in ordinary body cells, yet segregate during the formation of sex cells. Each member of the pair becomes part of the separate sex cell. The dominant gene, such as the purple flower in Mendel's plants, will hide the recessive gene, the white flower. After Mendel self-fertilized the F1 generation and obtained the 3:1 ratio, he correctly theorized that genes can be paired in three different ways for each trait; AA, aa, and Aa. The capital A represents the dominant factor and lowercase a represents the recessive. (The last combination listed above, Aa, will occur roughly twice as often as each of the other two, as it can be made in two different ways, Aa or aA.)

Mendel stated that each individual has two factors for each trait, one from each parent. The two factors may or may not contain the same information. If the two factors are identical, the individual is called homozygous for the trait. If the two factors have different information, the individual is called heterozygous. The alternative forms of a factor are called alleles. The genotype of an individual is made up of the many alleles it possesses. An individual's physical appearance, or phenotype, is determined by its alleles as well as by its environment. An individual possesses two alleles for each trait; one allele is given by the female parent and the other by the male parent. They are passed on when an individual matures and produces gametes: egg and sperm. When gametes form, the paired alleles separate randomly so that each gamete receives a copy of one of the two alleles. The presence of an allele doesn't promise that the trait will be expressed in the individual that possesses it. In heterozygous individuals the only allele that is expressed is the dominant. The recessive allele is present but its expression is hidden.

Mendel summarized his findings in two laws; the Law of Segregation and the Law of Independent Assortment.
[edit] Law of Segregation (The "First Law")

The Law of Segregation states that when any individual produces gametes, the copies of a gene separate, so that each gamete receives only one copy. A gamete will receive one allele or the other. The direct proof of this was later found when the process of meiosis came to be known. In meiosis the paternal and maternal chromosomes get separated and the alleles with the characters are segregated into two different gametes.
[edit] Law of Independent Assortment (The "Second Law")

The Law of Independent Assortment, also known as "Inheritance Law", states that alleles of different genes assort independently of one another during gamete formation. While Mendel's experiments with mixing one trait always resulted in a 3:1 ratio (Fig. 1) between dominant and recessive phenotypes, his experiments with mixing two traits (dihybrid cross) showed 9:3:3:1 ratios (Fig. 2). But the 9:3:3:1 table shows that each of the two genes are independently inherited with a 3:1 ratio. Mendel concluded that different traits are inherited independently of each other, so that there is no relation, for example, between a cat's color and tail length. This is actually only true for genes that are not linked to each other.

Independent assortment occurs during meiosis I in eukaryotic organisms, specifically metaphase I of meiosis, to produce a gamete with a mixture of the organism's maternal and paternal chromosomes. Along with chromosomal crossover, this process aids in increasing genetic diversity by producing novel genetic combinations.

Of the 46 chromosomes in a normal diploid human cell, half are maternally-derived (from the mother's egg) and half are paternally-derived (from the father's sperm). This occurs as sexual reproduction involves the fusion of two haploid gametes (the egg and sperm) to produce a new organism having the full complement of chromosomes. During gametogenesis - the production of new gametes by an adult - the normal complement of 46 chromosomes needs to be halved to 23 to ensure that the resulting haploid gamete can join with another gamete to produce a diploid organism. An error in the number of chromosomes, such as those caused by a diploid gamete joining with a haploid gamete, is termed aneuploidy.

In independent assortment the chromosomes that end up in a newly-formed gamete are randomly sorted from all possible combinations of maternal and paternal chromosomes. Because gametes end up with a random mix instead of a pre-defined "set" from either parent, gametes are therefore considered assorted independently. As such, the gamete can end up with any combination of paternal or maternal chromosomes. Any of the possible combinations of gametes formed from maternal and paternal chromosomes will occur with equal frequency. For human gametes, with 23 pairs of chromosomes, the number of possibilities is 223 or 8,388,608 possible combinations.[3] The gametes will normally end up with 23 chromosomes, but the origin of any particular one will be randomly selected from paternal or maternal chromosomes. This contributes to the genetic variability of progeny.

Background
The reason for these laws is found in the nature of the cell nucleus. It is made up of several chromosomes carrying the genetic traits. In a normal cell, each of these chromosomes has two parts, the chromatids. A reproductive cell, which is created in a process called meiosis, usually contains only one of those chromatids of each chromosome. By merging two of these cells (usually one male and one female), the full set is restored and the genes are mixed. The resulting cell becomes a new embryo. The fact that this new life has half the genes of each parent (23 from mother, 23 from father for total of 46) is one reason for the Mendelian laws. The second most important reason is the varying dominance of different genes, causing some traits to appear unevenly instead of averaging out (whereby dominant doesn't mean more likely to reproduce - recessive genes can become the most common, too).

There are several advantages of this method (sexual reproduction) over reproduction without genetic exchange:

1. Instead of nearly identical copies of an organism, a broad range of offspring develops, allowing more different abilities and evolutionary strategies.
2. There are usually some errors in every cell nucleus. Copying the genes usually adds more of them. By distributing them randomly over different chromosomes and mixing the genes, such errors will be distributed unevenly over the different children. Some of them will therefore have only very few such problems. This helps reduce problems with copying errors somewhat.
3. Genes can spread faster from one part of a population to another. This is for instance useful if there's a temporary isolation of two groups. New genes developing in each of the populations don't get reduced to half when one side replaces the other, they mix and form a population with the advantages of both sides.
4. Sometimes, a mutation (e. g. sickle cell anemia) can have positive side effects (in this case malaria resistance). The mechanism behind the Mendelian laws can make it possible for some offspring to carry the advantages without the disadvantages until further mutations solve the problems.

Mendelian trait
A Mendelian trait is one that is controlled by a single locus and shows a simple Mendelian inheritance pattern. In such cases, a mutation in a single gene can cause a disease that is inherited according to Mendel's laws. Examples include sickle-cell anemia, Tay-Sachs disease, cystic fibrosis and xeroderma pigmentosa. A disease controlled by a single gene contrasts with a multi-factorial disease, like arthritis, which is affected by several loci (and the environment) as well as those diseases inherited in a non-Mendelian fashion. The Mendelian Inheritance in Man database is a catalog of, among other things, genes in which Mendelian traits causes disease.

Knowledge is not mine and never be mine, it belongs to everyone who had will to have and spread it

Thursday, February 11, 2010

Hubungan Unik antara Cupang dan Ketapang

Ketika suatu saat saya berkunjung ke tempat teman, yang kebetulan sama-sama penggemar betta (atau cupang), terkejut bukan main hati saya. Ini kok ngaku – ngaku hobiis betta, tapi membiarkan air – air dalam aquarium mungilnya begitu kotor, kuning, bahkan beberapa diantaranya sangat pekat.

Sedikit bercanda, saya berseloroh. “itu cupang-cupang lu asli jawa ya, kok minumnya air teh, atau lu kasih air seni?”. “kasian banget nasib ikan – ikan lu kalo gitu”. Tambahku.

Itu gue kasih air rebusan ketapang”. Jawabannya singkat. “maklum baru gue kawinin

Terkejut, tapi gak mau dibilang bodoh. Sengaja aku diam atas jawabannya, takut dibilang bukan hobiis sejati cupang. Aku simpan jawaban itu, penasaran sama si “ketapang” ini.

Ingatan saya kembali ke masa kecil, dulu di perumahan orang bule di bilangan kuningan, banyak banget pohon ketapang. Pohon ketapang itu sendiri tingginya sekitar 20 meter lebih, terbilang tinggi untuk ukuran pohon di Jakarta. Setiap pulang sekolah, saya dan teman – teman selalu mengumpulkan biji – biji ketapang itu, dipecahkan kulitnya untuk kemudian daging buahnya kami makan. Rasa kacang bercampur kenari bermain dilidah kami. Tak jarang kami harus dikejar – kejar satpam, karena untuk mendapatkan buah ketapang kami harus melemparnya dengan batu. Kalo musim kemarau tiba, kami berguling2an diatas hamparan daun ketapang yang selalu rontok.

Di bangku kuliah saya mengenalnya lebih mendalam, tentang ciri – ciri fisik, habitus. Dan penyebarannya. Saya sekarang sering menemukan daunnya teronggok di dasar aquarium cupang. Berbekal sebuah laptop tua keluaran akhir 2003, dimulailah pencarian tentang si ketapang ini dan hubungannya yang unik dengan betta – betta kesayangan saya. Dan coba saya paparkan dalam beberapa deskripsi berikut.

Apa dan Bagaimana si “Indian Almond”
Menurut binomial nomenklatur, ketapang diidentifikasi sebagai Terminalia cattapa, dari keluarga Combretaceae. Karena penyebarannya yang kosmopolit, sehingga tidak diketahui asal usul dari tanaman ini. Ada beberapa nama yang disematkan untuk pohon ini; Bengal almond, Singapore almond, Ebelebo, Malabar almond, Indian almond, Tropical almond, Sea almond, pohon Talisay, pohon Payung dan Zanmande (creole).

Beberapa ilmuwan pernah menemukan pohon ketapang tertinggi hingga mencapai 35 m. Nama pohon payung memang identik dengan bentuk percabangan dan tajuk yang menyerupai payung, melebar dan melingkar luas (diameter tajuk mencapai 20 m). Kayunya termasuk jenis kayu keras yang memiliki resisten tinggi. Kulit pohonnya membentuk uliran kecil seperti mengelupas, layaknya kita temukan pada pohon-pohon sengon atau jeunjing.

Kalau melihat daunnya, jangan sampai tertukar dengan pohon mete, karena memang kedua pohon ini mempunyai daun yang agak mirip, dengan tulang daun yang sangat terlihat jelas. Walaupun beberapa daun ketapang tumbuh kecil, tapi rata-rata daun ketapang memiliki panjang daun 15 – 25 cm dengan lebar daun mencapai 14 cm. Permukaan daunnya terlihat licin dan berminyak. Pada musim kemarau pohon ini mempunyai sifat menggugurkan daunnya untuk menyimpan cadangan air lebih banyak, dan beberapa fungsi tumbuhan menjadi dorman. Daun yang mengering kemudian berubah warna menjadi kuning, merah, dan coklat ketika mengering.

Bunga ketapang, berkelamin ganda, dan berada dalam satu pohon. Buahnya sendiri diselimuti kulit lunak berserabut, biji dalam tiap buah hanya terdapat satu, seperti pada buah kenari. Rasanya juga mirip buah almond, dan aman untuk dimakan.

Secara alami, pohon ketapang tersebar di hutan dataran rendah di daerah tropis. Pohon ketapang sering dijadikan indikator adanya hutan pantai, selain pohon pandan dan waru laut. Karena sifat alaminya yang mempunyai daya hidup tinggi, dan bentuk tajuk yang melebar, ketapang merupakan pilihan utama dalam menghiasi dan meneduhi perumahan - perumahan baru atau wilayah halaman perkantoran di jakarta. Sangat mudah untuk menemukannya di sekitar kita. Apalagi untuk mereka yang tinggal di perumahan baru.

Daun Ketapang dan kesehatan

Ada beberapa kandungan alami yang terkandung dalam daun ketapang (dan buah), antara lain: flavonoids (sama halnya dengan kaempferol atau quercetin) atau dikenal dengan vitamin P atau citrin, tanin (punicalin, punicalagin atau tercatin seperti halnya pada teh, anggur, strawberry, delima, pomegranate, aren-arenan), saponin yang dipakai sebagai surfaktan, dan phytosterol (kolesterol tumbuhan dengan sedikit kandungan alkohol). unsur lain yang terdapat dalam daun ketapang antara lain; Sulfur, Nitrogen fosfor in dalam bobot beragam. Ketapang juga mengandung logam seperti Ca, Mg, Cu, Zn etc

Demikian kaya kandungan yang terdapat dalam daun ketapang, sehingga sangat umum menggunakannya dalam pengobatan alternatif yang sangat berguna. Lihat saja, di Taiwan orang sering memanfaatkan daun keringnya untuk mengobati liver dan air rebusannya dipakai untuk mengobati sakit kulit. Di suriname, teh yang terbuat dari seduhan daun ketapang diyakini bisa menyembuhkan disentri dan diarhea. Beberapa penelitian lebih lanjut tengah dilakukan untuk kemungkinan dipakai dalam pengobatan kanker, dan antioksidan.

Cupang dan Daun Ketapang
Di alam, penyebaran ketapang juga bisa ditemui di pinggir sungai, rawa, gambut (atau diamazon sering dihubungkan dengan ekosistm blackwater) dan danau. Tempat-tempat ini merupakan habitat alami cupang. Sangat mudah menemukan cupang bila disekitarnya terdapat pohon ketapang, cukup mencari dibawah guguran daun ketapang dan ternyata ini menjadi tempat favorit betta untuk berbiak. Ini yang kemudian yang menggugah rasa ingin tahu peneliti tersebut secara lebih lanjut.

Bila dilihat manfaat ketapang yang begitu banyak untuk manusia, demikian halnya untuk betta yang ada di aquarium kita. Betta yang ditemukan hidup disekitar guguran daun ketapang terlihat lebih aktif (lincah), kilauan warna dan sisiknya menjadi lebih cerah, dan tentu saja sehat.

Kandungan tanin, mineral, dan vitamin pada daun ketapang dapat merangsang pertumbuhan dan perkembangan bakteri berguna seperti infusoria dan beberapa bakteri lain. Kemudian bakteri inilah yang menjadi sumber pakan bagi burayak – burayak betta di alam. Begitu juga kandungan asam humik dan logam yang dapat menetralkan kondisi pH air, walaupun kondisi sekitarnya begitu ekstrim. Selain itu biasanya betta yang baru saja ditandingkan mengalami luka pada tubuh atau stress ketika kontes, maka daun ketapang menjadi pilihan tepat untuk memulihkan kembali kondisi betta kesayangan kita.

Tentu saja penggunaan bagi para hobiis betta harus diperhatikan. Yew (2004) dan beberapa peneliti dalam sebuah artikelnya menyebutkan dosis yang tepat untuk menjaga kesehatan betta adalah 1-2 daun ketapang dalam 50 liter air. Teknik paling mudah untuk mengeluarkan kandungan yang ada dalam daun ketapang adalah dengan cara merebusnya. Bila kita tidak ingin merebusnya, cukup biarkan selama 2 – 3 hari dalam air, sampai daun tersebut ternggelam dalam air. Jangan lupa untuk menggantinya setiap 15 hari sekali.

Kerusakan ekor dalam pengiriman betta dapat diminimalisasi dengan menambahkan larutan ketapang dalam airnya, kandungan tannin dan phytosterol dengan dosis agak tinggi dapat memberikan rasa tenang (bius ringan) pada betta. Dosis ini juga disesuaikan dengan jarak dan lama pengiriman.

Dalam keadaan kering daun ketapang dapat disimpan selama 6 bulan. Asalkan jauhkan dari tempat yang lembab dan terlindung dari sinar matahari dan panas.

Ini juga yang mendasari atison betta untuk mengembangkannya menjadi sebuah produk siap pakai dalam bentuk ekstrak daun ketapang dengan brand “Atison's Betta Spa Ketapang Leaf Extract”. Kemasannya dapat dilihat di: http://www.bluebettausa.com/galleryac1.htm.

Jadi, tunggu apalagi, gak usah malu untuk memunguti daun – daun ketapang yang gugur, walaupun harus menghentikan motor dan mobil yang anda kendarai sejenak. Selama berguna untuk betta kesayangan kita. elnino (02-12-2009)

first posted on the : http://kajidirilebihdalamlagi.blogspot.com/
Posted under real circumstance, source will be published and will not claimed as its own writing

Tail Biting, Perilaku Genetis Betta

oleh : elnino

Pernahkah kita merasakan kecewa ketika membuka kiriman paket yang di tunggu – tunggu? Kiriman Cupang (Betta) yang memang kita sangat dambakan, dan akhirnya bisa terbeli. Betapa kagetnya kita setelah mengetahui bahwa betta yang ada dalam paket tersebut sudah kehilangan setengah dari ekornya, Marah atau kesal pastinya, tak jarang bila kita merasa tertipu. Padahal betta tersebut di beli dari farm atau breeder yang ternama, apalagi biasanya tercantum prasyarat bahwa segala kerusakan selama pengiriman diluar tanggung jawab penjual. Atau ketika pulang dari kantor, kita menemukan betta HM kesayangan yang ada di aquarium terlihat lesu, dengan serpihan ekor tersebar di lantai aquarium?

Salah satu daya tarik betta terletak pada keindahan ekornya, salah satu kriteria penilaian dalam kontes-kontes ikan cupang yang di adakan selama ini dikelompokkan pada kelas ekor, dan itu juga yang dapat membedakan jenis betta satu dengan yang lain. Sejauh ini ada beberapa jenis yang sering diperlombakan. Halfmoon, Plakat, Double Tail, Rosetail, Delta (Slayer), dan tentu saja jenis ekor kebanggaan kita karena produk asli anak bangsa Crown Tail (Serit). Namun seketika daya tarik itu hilang ketika ekor betta mengalami kerusakan.

Apa Sebenarnya yang menyebabkan kerusakan ekor betta
Memang kerusakan ekor umumnya terjadi bila betta tersebut di tempatkan dalam satu tempat dengan betta yang lain. Harus kita sadari adalah, betta adalah ikan soliter yang tidak bisa dicampur.

Dalam beberapa kasus yang terjadi, ada perilaku aneh pada betta, yaitu mengigiti ekornya sendiri. Perilaku ini umum terjadi pada jantan, tapi tidak sedikit juga terlihat pada betina, terutama untuk jenis ekor dan sirip panjang. Apa yang menyebabkannya? Stress, itu yang pasti. Ada beberapa kondisi yang menyebabkan betta tersebut menjadi stress

Stress. Kondisi ini biasa ditemui ketika cupang berada dalam pengiriman. Selama pengiriman betta ditempatkan di dalam plastik beroksigen, namun kondisinya sangat gelap dan ukuran kemasan yang sangat kecil. Guncangan – guncangan mengakibatkan stress pada betta, kadangkali posisi ekor menyentuh wajah betta, secara otomatis dan naluriah, betta akan melakukan “self defense” dan menganggap bahwa yang mengenai wajahnya adalah ikan lain. Pada jenis plakat dan betina, kondisi ini juga bisa terjadi, karena tubuh betta selama pengiriman dalam posisi meringkuk.

Kadang kala untuk melihat keindahan sirip dan ekor betta, kita menempatkan lampu penghias, sehingga ketika malam tiba, betta masih bisa terlihat. Padahal mata betta sangat sensitif terhadap cahaya dan gerakan. Intensitas cahaya yang kuat dan berlebihan dapat mengakibatkan kebutaan sehingga betta mengalami kebingungan yang luar biasa. Jangan kaget bila kita memasang lampu 24 jam, lalu menemukan sisa-sisa potongan sirip dan ekor pada lantai akuariumnya.

Kondisi lain yang dapat membuat betta stress adalah kita terlalu memantau, pada saat betta menajga telurnya atau anak2nya. Mengontrol ikan cupang yang sedang menjaga telur atau burayak memang perlu, tapi harap diingat intensitasnya. Memang sebuah kebanggan dapat membiakkan betta kesayangan kita.

Genetik. Beberapa penelitian menyebutkan, bahwa “tail biting” merupakan sifat genetis dari setiap betta, yang bisa diturunkan. Jadi setiap betta berpotensi untuk memiliki sifat “tail biting”, terlebih dengan sensitivitas dan pengaruh stress dari betta itu sendiri.

Pemberian Pakan dan Higienis. Intensitas pemberian yang tidak teratur, atau betta dibiarkan terlalu lama dalam kondisi tanpa pakan dalam aquarium, atau kondisi air yang kotor membuat betta juga menjadi stress. Perlakuan kasar juga dapat menimbulkan stress pada betta. Tidak benar bila kerusakan ekor betta disebabkan oleh kemampuan meregangkan sirip-siripnya yang indah.

Pengaruh rusak ekor dan penanganan
Rusak ekor atau sirip adalah luka terbuka yang rentan dan bisa memancing datangnya jamur dan parasit yang merugikan bagi kesehatan betta. Tidak jarang bila kondisi tersebut dibiarkan larut, kematian juga terjadi.

Bila betta telah mengalami kerusakan ekor, bila terlambat, jangan kaget bila kemudian kita menemukan betta kesayangan kita sudah tidak bernyawa. Segera lakukan langkah untuk mencegah berkembangnya jamur atau parasit. Obat2an ikan seperti blitz itch, reid all, fishmate, atau root stop dan pencegah jamur yang mengandung melafix dengan dosis sesuai dengan yang dianjurkan. Untuk kondisi ringan sirip betta akan kembali sehat, walaupun tidak akan bisa sama persis dengan kondisi semula sebelum rusak ekor terjadi.

Daya tarik betta terletak pada keindahan sirip, bila sirip rusak otomatis menjatuhkan “nilai jual” dari betta itu sendiri. Untuk breeder ini tidak menjadi masalah, dari pengalaman beberapa breeder, mereka tetap membiakkan betta tersebut walau siripnya sudah rusak. Sifat rusak ekor ini tidak diturunkan kepada burayak2nya.

Perhatikan kualitas air dari aquarium tempat betta. Jangan pernah lengah dalam mengatur kualitas air tersebut dengan menggantinya secara periodik atau kondisi tertentu, apalagi pada saat awal musim hujan yang berpengaruh juga terhadap kadar kimiawi air tersebut.

Biasanya dalam pengiriman, betta diberikan sedikit daun almond ke dalam air, fungsi daun almond ini bila menyerap dalam air adalah dapat memberikan ketenangan (bius ringan) pada betta selama pengiriman. Dosis yang diberikan disesuaikan dengan jarak tempuh dan lama perjalanan.

Perhatikan pemberian intensitas cahaya lingkungan sekitar aquarium, atau pada saat pemotretan betta. Jangan pula membatasi, karena cahaya juga berpengaruh pada hasil foto betta menajdi llebih mengagumkan.

Siapa yang tidak senang bila betta kembali sehat. Mari kita jaga betta kesayangan kita, dan juga melestarikan salah satu kekayaan sumber daya alam hayati Indonesia. Jayalah Betta Indonesia.

Elnino (dari berbagai sumber)

Posted under real circumstance, source will be published and will not claimed as its own writing

My Second Blog, Talking Only about Betta

well, the first one is easy, but to start the first one.... blah, it's kinda hell, ya know...

and now, some of my friend told me to use a new one for a specific issue. i say to my self, couldn't be that hard, since i started the other one. but the fact is, i dunno where to start, kya... kya.... kya...

hope we could dig up together about betta world, and enrich ourselves with unlimited universe of knowledge.